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We discuss a method of finding a structural form of the free energy satisfying the 
scaling hypothesis based on the simultaneous analysis of the asymptotic forms of 
the derivatives of the free energy and power functionals. 

The problem of describing the thermodynamic behavior in a wide region about the criti- 
cal point was solved in [1-12] with the help of nonanalytic equations of state. This was 
done by choosing initial thermodynamic functions: the chemical potential ~(p, T) [I, 3], the 
specific heat at constant volume Cv(P, T) [5-9], and the internal energy u(p, T) [10-12], 
which consist structurally of two terms: a nonanalytic term satisfying the power laws of 
scaling theory, and a regular function reproducing the features of the pure material for 
small densities p and pressures p [7-12]. Then with the help of appropriate thermodynamic 
equal~ties, relating the initial thermodynamic functions and thermal parameters, the equa- 
tion of state is constructed. 

In [I~5] a parametric representation of the scaling equation of state was used, which 
gives all of the scaling features of the critical point. In [13] a method of joining the 
scaling equation of state and the virial expansion with the help of local equations of state 

was proposed. In the calculation of the thermal properties, this approach leads to formida- 
ble mathematical difficulties because of the necessity of integrating and differentiating 
the scaling, virial, and local equations of state. 

For practical purposes, it is more convenient to write the nonanalytic equation of state 
as a single-structural form, one term of which gives the scaling features near the critical 
point and the other correctly reproduces the temperature dependence of the lowest virial co- 
efficients in the regular part of the thermodynamic surface. An attempt to use the physical 
variables p, T to solve the problem was made in [8], but the structure of the singular term 
Cvn(P, T) of the specific heat at constant volume Cv(P , T) was chosen in [8] in a not com- 
pletely successful way. In particular, the use of this function led to the failure to de- 
scribe the scaling behavior of the material in the asymptotic vicinity of the critical point. 
According to [8], the derivatives (gp/gv)T and d2p/dt 2 on the critical isochore turn out to 
be analytic functions, which does not give the required divergence of the isothermal com- 
pressibility K T ~ T-Y on the critical isochore, and also contradicts accurate experimental 
data supporting the nonanalytic nature of the derivative d~p/dT ~ [14]. Analogous problems 
also occur with the singular terms of the thermodynamic functions Cv(P, T) and u(p, T) used 
in [7, 9-12]. 

Thus the problem of working out a simple and effective method of constructin~ the non- 
analytic terms in the thermodynamic functions which satisfy the requirements of the scaling 
hypothesis is still of current interest. 

The present paper is also devoted to the solution of this problem. But as an initial 
thermodynamic function we use the free energy F(p, T). The choice of F(p, T) is natural, be- 
cause in the p, T plane the free energy is a characteristic function [15] and one can deter- 
mine in a simple way the thermodynamic functions used as a startin~ point in [].-12] in terms 
of the free energy. 

According to the scalin~ bypothesis~ in the region near the critical point, the equi- 
librium properties of pm:e materials are described by simple power laws [16] 

Ap]~= 0 ~ Ap [Apl ~-r, Co,~= 0 ~, [Apj -~/~, KT.~= o ~ [Apl -v'~, (1) 
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Here a, 8, ~, X are the critical exponents which satisfy the Griffiths relations 6(6--l)= 
?, =-~-[36-~-1~=2 [16]. 

We write the free energy F(p, T) as a sum of two functions 

F(p, T)=P"Fn(P, T)-}-Fr(p, T), (2) 
where pnFn(p, T) and Fr(P, T) are the nonregular and regular parts of the free energy, re- 
spectively. 

Because p ---- p~ (aF/dp)r, pC~ = -- T (02pF/OT2)o, K~ -~ = P(OP/~P)T , it follows directly from (I) 
that very close to the critical point the partial derivatives of the nonregular function 
Fn(P, T) have the following asymptotic forms: 

--~-p / r,~=o "" Ap IAplS-*' \ - - O T =  ]o,,=o " IA~ 

O'fri I --IApl.~/~, ( Oef n ~ --i,rl_cz, ( O'fn ~ ,.~ IT, I,, " 
OP ~ Jr,~=o I aT ~ ]O,Ao=O k Op 2 /T,Ao=O 

X ~ X  C X ~ X  ~ 

(3) 

Close to the critical point, the behavior of the function Fn(O , T) is described, accord- 
ing to (3), by power laws with noninteger exponents. Therefore, we look for the solution of 
the problem in the class of power functionals. We studied the following power-type depend- 
enses: 

Fn( p, T)= Z~(p, T) L, ( 4 )  

Fn( p, T) = (Z, (p, T) + Z~(p, T) t~ )~', ( 5 )  

Fn(P, T) -- Z,(p, 7') ~' + Z2(p, T) ~*, (6) 
where 

z,(o, T)= A.  ,ACJ; &(O, T)= 
i , ]=~o i ,  ]=0 

% = S o = % - - r i o = 0 ;  Aoo=0; % < % < . . . ;  

% < ~ 1 ~ . . . ;  % < e 1 < . - . ;  ~ lo<~h<. . -  

Obviously when T -~ 0 and Ap + 0, the singular pnFn(p , T) of the free energy and its de- 
rivatives determine the terms (4) through (6) with the smallest values of the exponents 
~i, ej, ~i, and ~j. Thus the first stage of the problem reduces to determining the quantities 
%, sl, ~i, ~1, ~i, and ~a in terms of the critical exponents ~, B, 5, and y. 

We show that a solution is possible bv looking for the singular terms of the thermody- 
namic functions. We first analyze (5) from which it follows directly that 

OFn t --~O Jr =-- L(Zi(o, T) 4- Z~ (p, T)~@ -~ Z~(0, T), 

2Fn '/ = ~1 (~1 - -  1) (Z 1 (~0, T) -~- g2 (P, T)~2) ~x-2 23 (~), T) 2 -~ 
0p 2 ) r 

[ E  eJ(sS--- 1) -l- ~1 (Z~ (Is, T) -+ Z~ (Is, T)~@ ~-I Ais'r%A9 ~s-2 2 + 
i. i=o Pc 

+~_~(EBoxr "qs(qJ--1) .) 2 Z2 (p, T) ~'-~ § 
~,i=o Pc 

~, s=o Pc/ 

(7) 

(8) 

342 



( O~Fn / ~ # =  ~(~,- ~)(&(p, 7") § &(p, T)~) ~' • 

i,/=o ~,/=o 

+~i(Zi(p, r ) +  Z~(p, T){~)~'-' [ i~,:  Ajrr tP.~((t)i -Tc 1) + 

i ,  ] = 0  

) Z~(p, T) L'-~ " - ~ ( ~ - - 1 ) (  ~ "  ' BO'~%-tA'~ Tc ~j ]'~2Z2(~~ T)~~-l] ' 
i ,  [ : 0  

where 

Za(p, T) = sign(Ap) ,. ~._] ej 
i,[~O 

~ - ~ 2 ( . s  ~ijT'~imp ~1i-1 ~1~ ) Z= (9, T)~=-~ ]. 
~0 c ,, 

We carry out a simultaneous analysis of the partial derivatives of the function Fn(P, T) 
as given by (7) through (9), and the scaling relations (3). 

We put T = 0 in (7), (8), and find that relations (3) are satisfied if we have the equal- 
ity ~i~i= i@6=2@7/~ It also follows from (8) that 61 = I or ~i = 2, because in the oppos- 
ite case the derivative (a=Fn/3P2)T either vanishes (cx > 2) or diverges (cI < 2, cx = i) on 
the critical isochore (Ap = 0) and this contradicts (3). 

On the other hand, if Aio ~0, then it follows from (9) that %=I or %=2 because in 
the opposite case the derivative (~Fn/aT=)p either diverges (%<2, %~i) or vanishes 
(%>2) at T = 0, and this also contradicts (3). But according to (3), when Ap = 0 (see (8)) 
we must have %~i = 2--g, which is not consistent with the above condition relating c~, ~, and 
~. The contradiction is resolved if in (5) and (7) through (9) we have A1o = 0, Ao!~=0 or 
A~o~: 0, Ao~ = 0. We considered both of these possibilities. It turns out that if A~o ~0, 
Aox = 0, then a solution of the problem of the power type (8) does not exist. Therefore we 
will take A2o = 0, Aol ~ 0. 

It then follows from (9) that ~ = 1 or ~= = 2 because if ~I < 2 and ~el, the deriva- 
tive (aaFn/aTa)p diverges on the critical isotherm T = 0 and ~x > 2, it is equal to zero, 
which contradicts (3). Now substituting Ap = 0 in (9) and comparing with (3) we obtain an- 
other relation ~ig= = 2 -- a. On the other hand, when Ap + 0 it follows from (3) and (8) 
that if el = 1 we must have the relation ~J~2($i -- i) = y, and if ci = 1 we must have *~2- 

((~ -- 2) = y. 

In order to correctly describe the behavior of C v on the critical isotherm (see (3), 
(9)) it is sufficient to require that if @x = 1 the relation n~(~a~a-- I) -- ~/B be satisfied 
and if @~ = 2, the relation nx(~: -- 2) =--~/B. 

Now we substitute r = XcIgpIX/B in (8) and (9) and find that in order to satisfy (3) on 
the coexistence curve it is sufficient to put s:~ = 2 + Y/B and ~ =  = 2 -- ~. 

We write the relations obtained above for the exponents c~, @:, ~, ~i, 6= and the criti- 
cal exponents: 

~=q, ~=I@~, ~i~i~-2--~, (I0) 

where El, ~ = 1 or 2. 

Therefore the simultaneous analysis of the derivatives of the function Fn(P , T) and the 
scaling relations (3) yield a structure of Fn(P, T) within the class of power functionals 
which satisfies all of the requirements (3): 

Fn( p, T) = (AoxAp e' + (Box~*' q- B,oApn')~) ~', (]I) 

where Aol, ~0~, B10>0; 81, Nt, ~i, ~t, g~ are real exponents satisfying (I0). 
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The above method of looking for the singular terms of the thermodynamic functions was 
used to analyze the power laws (4) and (6). It was shown that the problem does not have a 
solution of the form (4). In the class of functionals (6) the following structural form of 
Fn(O , T) was found, satisfying all of the requirements of (3): 

Fn(p, T) : - -  (Aolz ~' + AloAp ~' )~ + A92 (Boa@ 1 + B~oAP ~' )h, ( 1 2 )  

where  Aao, Aol, Bol, Blo:>0; %, el, ~i, ~1, ~ ,  ~ a r e  r e a l  e x p o n e n t s  s a t i s f y i n g  t h e  f o l l o w i n g  r e l a -  
t ions 

qOl~ 1 = 2 - -  ~z, 81~ I = 1 + 6, qh = 1 or 2, 
~h=**/~ ,  ~h~z ---- ~ (6 - -1) ,  * ~ =  1 or 2. (13) 

We now use the structural forms of Fn(9, T) obtained above to construct both scaling and 
wide-range equations of state satisfying the power laws (I) of the scaling theory. 

The free energy in the scaling hypothesis is given by [17] 

oF (P, T) = [AplS+~a (x) + 9Fo (T) + A (T), (14) 

where Fo(T), A(T) are regular functions of temperature, a(x) is the free energy scaling func- 
tion which is coupled to the chemical potential h(x) and specific heat f(x) scaling functions 
by the differential equations 

- -  x a '  (x) + (2 - -  ~z) a (x) = ~h (x), [ (x) = a" (x). (15)  

We transform (2), (ii), (12) to the form (15) and using the requirement that the chemi- 
cal potentials be equal at x = Xc, where x c is a constant, we obtain the following represen- 
tation for the scaling function a(x): 

a(x) = (Ao~ + (Bo~x 'h + Bao) h )~ + C, (16) 

where the ~I, ~I, ~2 are determined from (I0), 

a(x) = - -  (AoS a + A~o) ~' + (Bo~x *~ + B10) ~2 +C,  (17) 

where  t h e  e x p o n e n t s  ~ ,  ~ ,  ~ ,  ~ a r e  d e t e r m i n e d  f rom (13) and t h e  c o n s t a n t  C in  (16) and (17) 
i s  found from --xca' (x -= xc) + ( 2 - -  a) a (x=x~) :0 .  

Substituting successively (16) and (17) into (14), we find that near the critical point 
the scaling functions h(x) and f(x) behave according to simple power laws: 

const (x--~ 0), lim [ (x) = { const (x ~ 0), 
l i m b ( x ) =  t ~ xv (x-+oo), x -~ (x--->-oo). 

(18) 

The asymptotic forms for f(x) and h(x) in (18) are in complete agreement with the scaling 
hypothesis [16]. 

The scaling equation of state (14) qualitatively and quantitatively describes correctly 
only a small region about the critical point. 

We show that from the singular terms (Ii) and (12) of the free energy (2) worked out 
here, an equation of state describing a wide region about the critical point and also the re- 
gion of small densities and pressures can be constructed. 

A physically correct free energy for small 0 and p has the form~ 

F(p, T) : RTln9 + RT x HI/)(T)p ~, (19) 
i = l  

where H(i)(T) are the virial coefficients. 

On the other hand, it follows directly from (II) and (12) that pnFn(0 -> 0, T) - pn. 

Hence thehfrea energy (,2), written i~ the~form ~ ~ 

F(p, T ) = p " F  n(p, T ) + R T l n p + R T 2  ( n ~ C ~ j ( l _ _  T c f ) A p / ,  (20) 

i = 1  
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where n~2 and Fn(P , T) is the nonregular function (ii) or (12), gives not only the scaling 
behavior (i) in the critical region, but also gives the ideal gas limit, and also correctly 
reproduces the temperature dependence of the second virial coefficient. In this way the 
structural form (20) compares favorably to the starting-point thermodynamic functions used 
in [10-12]. 

NOTATION 

, chemical potential; C v, specific heat at constant volume; KT, isothermal compressi- 
bility; u, internal energy; p, pressure; p, density; T, absolute temperature; P~C' Pc, Tc' 
critical parameters; R, universal gas constant; a(x), h(x), f(x), scaling functions; x = x c, 
equ:~tion of the coexistence curve; x = T/IA01~/B scaling variable; Ap~=(p--p~/pc~ AP=(P--P~/Pc ;~ 
T= (T--Tc)/Tc; Cvn , singular term ~n the specific heat at constant volume; ~, B, ~, Y, criti- 
cal exponents; F, free energy; H(1)(T), second virial coefficient. 
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